6 research outputs found

    Robust and Efficient Swarm Communication Topologies for Hostile Environments

    Full text link
    Swarm Intelligence-based optimization techniques combine systematic exploration of the search space with information available from neighbors and rely strongly on communication among agents. These algorithms are typically employed to solve problems where the function landscape is not adequately known and there are multiple local optima that could result in premature convergence for other algorithms. Applications of such algorithms can be found in communication systems involving design of networks for efficient information dissemination to a target group, targeted drug-delivery where drug molecules search for the affected site before diffusing, and high-value target localization with a network of drones. In several of such applications, the agents face a hostile environment that can result in loss of agents during the search. Such a loss changes the communication topology of the agents and hence the information available to agents, ultimately influencing the performance of the algorithm. In this paper, we present a study of the impact of loss of agents on the performance of such algorithms as a function of the initial network configuration. We use particle swarm optimization to optimize an objective function with multiple sub-optimal regions in a hostile environment and study its performance for a range of network topologies with loss of agents. The results reveal interesting trade-offs between efficiency, robustness, and performance for different topologies that are subsequently leveraged to discover general properties of networks that maximize performance. Moreover, networks with small-world properties are seen to maximize performance under hostile conditions

    Arbitrage Equilibrium, Invariance, and the Emergence of Spontaneous Order in the Dynamics of Bird-like Agents

    No full text
    The physics of active biological matter, such as bacterial colonies and bird flocks, exhibiting interesting self-organizing dynamical behavior has gained considerable importance in recent years. Recent theoretical advances use techniques from hydrodynamics, kinetic theory, and non-equilibrium statistical physics. However, for biological agents, these don't seem to recognize explicitly their critical feature, namely, the role of survival-driven purpose and the attendant pursuit of maximum utility. Here, we propose a novel game-theoretic framework and show a surprising result that the bird-like agents, garuds, self-organize dynamically into flocks to approach a stable arbitrage equilibrium of equal effective utilities. While it has been well-known for three centuries that there are constants of motion for passive matter, it comes as a surprise to discover that the dynamics of active matter populations could also have an invariant. This is essentially the invisible hand mechanism of Adam Smith's in a biological context. What we demonstrate is for ideal systems, similar to the ideal gas or Ising model in thermodynamics. The next steps would involve examining and learning how real swarms behave compared to their ideal versions. Our theory is not limited to just birds flocking but can be adapted for the self-organizing dynamics of other active matter systems.Comment: New discussion points have been adde
    corecore